Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Rosa Carballo,* Berta Covelo, Emilia García-Martínez and Ezequiel M. Vázquez-López

Departamento de Química Inorgánica,

Facultade de Ciencias-Química, Universidade de Vigo, 36200-Vigo, Galicia, Spain

Correspondence e-mail: rcrial@uvigo.es

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.032$
$w R$ factor $=0.084$
Data-to-parameter ratio $=17.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis(acetato-O)diaqua(2,2'-bipyridyl- N, N^{\prime})cobalt(II) (OC-13): a two-dimensional material

The structure of the title compound, $\left[\mathrm{Co}(\mathrm{AcO})_{2}\left(2,2^{\prime}-\right.\right.$ bipy $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ or $\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, consists of mononuclear molecules with crystallographic twofold rotation symmetry. The Co atom displays a distorted tetragonally compressed octahedral environment, with a unique $\mathrm{Co}-\mathrm{N}$ distance of 2.1227 (14) \AA and $\mathrm{Co}-\mathrm{O}$ distances in the range 2.0976 (13)-2.1256 (14) A. The molecules are self-assembled via hydrogen bonds to form an one-dimensional chain and via aromatic-aromatic interactions giving a two-dimensional structure.

Comment

The construction of coordination polymers with one-, two- and three-dimensional frameworks using directional interactions such as hydrogen-bonding and dative coordinate bonding has attracted much attention. In this sense, the utilization of hydrogen bonding is a well known design principle in the construction of a supramolecular architecture (Lehn, 1995). The introduction of hydrogen bonds can be achieved by the use of coordinating water molecules which tend to form hydrogen bonds with neighbouring nitrogen- and oxygencontaining organic units in order to link the network structures. As part of a study of the supramolecular organization of cobalt(II) carboxylate complexes (Carballo et al., 2001), we report here the two-dimensional structure of the mononuclear mixed-ligand compound $\left[\mathrm{Co}(\mathrm{AcO})_{2}\left(2,2^{\prime}\right.\right.$-bipy $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, (I).

(I)

Compound (I) is isostructural with the nickel(II) complex $\left[\mathrm{Ni}(\mathrm{AcO})_{2}\left(2,2^{\prime}\right.\right.$-bipy $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ (Ye et al., 1998), which has a two-dimensional structure generated via hydrogen bonding between the hydrophilic groups and via $\pi-\pi$ interactions
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

Figure 1
ZORTEP (Zsolnai \& Huttner, 1994) diagram of $\left[\mathrm{Co}(\mathrm{AcO})_{2}\left(2,2^{\prime}-\right.\right.$ bipy $)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$] showing the atom-numbering system. Non-H atoms are represented as ellipsoids drawn at the 30% probability level.
between the hydrophobic groups. In (I), the cobalt(II) atom lies on a twofold axis (e position in the Wyckoff notation) and is six-coordinate, bound in equatorial positions to the nitrogen atoms of one $2,2^{\prime}$-bipyridyl molecule and two aqua ligands, and in apical positions to two unidentate acetates. The bond lengths between cobalt and its surrounding atoms (Table 1) are similar, but not exactly equal, to those found in the nickel compound. The $\mathrm{Co}-\mathrm{O}_{\text {acetate }}$ bond is only slightly longer than $\mathrm{Ni}-\mathrm{O}_{\text {acetate }}$ [2.079 (2) \AA], but more significant is the lengthening of the $\mathrm{Co}-\mathrm{N}$ bond $[2.1229$ (14) \AA compared with $\mathrm{Ni}-$ $\mathrm{N}(2.069(2) \AA]$. However, the two mutually trans $\mathrm{Co}-\mathrm{O}_{\text {acetate }}$ distances are shorter than the remaining four bond distances in (I), denoting a kind of distortion in the octahedral coordination geometry around $\mathrm{Co}^{\mathrm{II}}$ absent in the $\mathrm{Ni}^{\mathrm{II}}$ analogue. The $\mathrm{Co}^{\text {II }}$ ion with a high-spin d^{7} electron configuration is subject to a Jahn-Teller effect and, as a result, a tetragonally compressed octahedral geometry is present in (I). There are no significant differences in the $\mathrm{C}-\mathrm{O}$ distances in the acetate group [1.257 (2) and 1.253 (2) \AA], due to the involvement of the uncoordinated O 2 in two strong hydrogen bonds, giving rise to a pseudo-bridging behaviour of the carboxylate group (Deacon \& Phillips, 1980). The individual pyridine rings of the $2,2^{\prime}$-bipyridyl ligand are planar, but the dihedral angle between the two pyridyl rings is $8.2(1)^{\circ}$.

Figure 2
SCHAKAL (Keller, 1988) diagram showing the packing due to $\pi-\pi$ interactions.

There are intra- and intermolecular hydrogen-bonding interactions between the water molecules and the uncoordinated $\mathrm{O}_{\text {carboxylate }} \mathrm{O} 2$ (Table 2). Each water molecule, as donor, and each O 2 atom, as acceptor, participate in two hydrogen bonds, one intra- ($\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{O} 2^{\mathrm{i}}$; symmetry code as in Table $2)$ and another intermolecular ($\mathrm{O} 3-\mathrm{H} 3 B \cdots \mathrm{O} 2^{\text {ii }}$; symmetry code as in Table 2). The intermolecular hydrogen bond involves two O 2 atoms of two neighbouring molecules, giving a one-dimensional zigzag chain extending along the c axis, thus forming channels as shown in Fig. 2. The separation between the planes of each pair of adjacent pyridyl rings in this chain is $8.15 \AA$. The intercalation of bipyridyl groups on one side of a chain with those on the next chain expands the structure into a two-dimensional network (Fig. 3). As result of the intercalation, the aromatic ring planes overlap in an offset or displaced geometry with a significant ring slippage, to the extent that only some atom-atom contacts have distance values accepted for a $\pi-\pi$ interaction (Janiak, 2000), the shortest distance being $3.698 \AA$ for $\mathrm{C} 4 \cdots \mathrm{C} 5^{\text {iii }}$ [symmetry code: (iii) $\mathrm{x},-y, 1 /$ $2+z]$.

Experimental

Compound (I) was obtained as a by-product from the mother liquor resulting from the synthesis of $\left[\mathrm{Co}(\mathrm{HBENO})_{2}\left(2,2^{\prime}-\text { bipy }\right)_{2}\right]$ (Carballo et al., unpublished) from cobalt(II) acetate, benzylic acid (=

Figure 3
SCHAKAL (Keller, 1988) diagram showing the one-dimensional zigzag chains.
$\mathrm{H}_{2} \mathrm{BENO}$) and 2,2'-bipyridyl in isopropyl alcohol; m.p. $>523 \mathrm{~K}$. Analysis found: C $45.5, \mathrm{H} 5.2, \mathrm{~N} 7.6 \% ; \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Co}$ requires: C 45.5, H 4.9, N 7.6\%. IR (KBr, cm ${ }^{-1}$): $3284(v s$, br) $v(\mathrm{OH}), 1557(v s)$ $v_{\text {asym }}(\mathrm{COO}), 1417(v s) v_{\text {sym }}(\mathrm{COO})\left[\Delta v=v_{\text {asym }}(\mathrm{COO})-v_{\text {sym }}(\mathrm{COO})=\right.$ 140]; 1471 (m), $1340(\mathrm{~m}), 1162(\mathrm{~m}), 1050(\mathrm{~m}), 1020(\mathrm{~m}), 773(\mathrm{~s}), 739$ (m), 657 (s) bands due to $2,2^{\prime}$-bipyridyl.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=369.23$
Monoclinic, $C 2 / c$
$a=15.4398$ (17) \AA
$b=12.8818$ (14) \AA
$c=8.1537$ (9) A
$\beta=92.890(2)^{\circ}$
$V=1619.6(3) \AA^{3}$
$Z=4$
$D_{x}=1.514 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2454
reflections
$\theta=2.6-28.0^{\circ}$
$\mu=1.09 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, orange
$0.24 \times 0.14 \times 0.12 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.783, T_{\text {max }}=0.877$
5035 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.084$
$S=1.03$
1907 reflections
112 parameters

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

$\mathrm{Co}-\mathrm{O} 1$	$2.0974(13)$	$\mathrm{O} 2-\mathrm{C} 10$	$1.253(2)$
$\mathrm{C}-\mathrm{N} 1$	$2.1229(14)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.511(3)$
$\mathrm{Co}-\mathrm{O} 3$	$2.1258(13)$	$\mathrm{N} 1-\mathrm{C} 5$	$1.343(2)$
$\mathrm{O} 1-\mathrm{C} 10$	$1.257(2)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.343(2)$
$\mathrm{O}^{1}-\mathrm{Co}-\mathrm{O} 1$	$179.96(7)$	$\mathrm{N} 1-\mathrm{Co}-\mathrm{O} 3^{\mathrm{i}}$	$170.59(5)$
$\mathrm{O} 1-\mathrm{Co}-\mathrm{N} 1^{\mathrm{i}}$	$90.83(5)$	$\mathrm{O} 1-\mathrm{Co}-\mathrm{O} 3$	$92.71(5)$
$\mathrm{O} 1-\mathrm{Co}-\mathrm{N} 1$	$89.14(5)$	$\mathrm{N} 1-\mathrm{Co}-\mathrm{O} 3$	$94.72(6)$
$\mathrm{N} 1^{1}-\mathrm{Co}-\mathrm{N} 1$	$76.62(8)$	$\mathrm{O}^{\mathrm{i}}-\mathrm{Co}-\mathrm{O} 3$	$94.15(8)$
$\mathrm{O} 1-\mathrm{Co}-\mathrm{O} 3^{\mathrm{i}}$	$87.32(5)$		

Symmetry code: (i) $-x, y, \frac{3}{2}-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.768(16)$	$1.887(17)$	$2.635(2)$	$164(3)$
$\mathrm{O} 3-\mathrm{H} 3 B \cdots 2^{\text {ii }}$	$0.86(2)$	$1.92(2)$	$2.7663(19)$	$165(2)$
Symmetry				

The H atoms bound to O 3 (aqua ligand) were refined with a common isotropic displacement parameter. All other H atoms were included with a riding model.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai \& Huttner, 1994) and SCHAKAL (Keller, 1988); software used to prepare material for publication: SHELXL97.

The authors acknowledge financial support from the General Secretariat for Research and Development, Xunta de Galicia (Spain) under Project PGIDT00PX120301PR.

References

Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Carballo, R., Castiñeiras, A., Covelo, B., Niclós, J. \& Vázquez-López, E. M. (2001). Z. Anorg. Allg. Chem. In the press.

Deacon, G. B. \& Phillips, R. J. (1980). Coord. Chem. Rev. 33, 227-250.
Janiak, C. J. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
Keller, E. (1988). SCHAKAL. University of Freiburg, Germany.
Lehn, J. M. (1995). Supramolecular Chemistry: Concepts and Perspectives. Weinheim, Germany: VCH.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Ye, B.-H., Chen, X.-M., Xue, G.-O. \& Ji, L.-N. (1998). J. Chem. Soc. Dalton Trans. pp. 2827-2831.
Zsolnai, L. \& Huttner, G. (1994). ZORTEP. University of Heidelberg, Germany.

